COMPARING THE DISCONTINUOUS GALERKIN AND HIGH-ORDER DIAMOND DIFFERENCING METHODS FOR THE TRANSPORT EQUATION ON A LOZENGE-BASED HEXAGONAL GEOMETRY

نویسندگان

چکیده

This paper presents an implementation and a comparison of two spatial discretisation schemes over hexagonal geometry for the two-dimensional discrete ordinates transport equation. The methods are high-order Discontinuous Galerkin (DG) finite element scheme Diamond Differencing (DD) scheme. DG method has been, is being, studied on geometry, also called honeycomb mesh – but not DD method. In this research effort, it was chosen to divide hexagons into (at least) three lozenges. An affine transformation then applied onto said lozenges cast them reference quadrilaterals usually in elements. practice, effectively means that equations used Cartesian have their terms operators altered using Jacobian matrix transformation. implemented solver code DRAGON5. Two 2D benchmark problems were verification validation, including one based Monju 3D reactor benchmark. It found diamond-differencing seemed better. converged much faster towards solution at comparable refinements first-order expansion flux. Even if difference present second-order, slower, about four times slower.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discontinuous Galerkin Methods for the Radiative Transport Equation

This notes presents some recent results regarding the approximation of the linear radiative transfer equation using discontinuous Galerkin methods. The locking effect occurring in the diffusion limit with the upwind numerical flux is investigated and a correction technique is proposed.

متن کامل

High-Order Discontinuous Galerkin Methods for CFD

In recent years it has become clear that the current computational methods for scientific and engineering phenomena are inadequate for many challenging problems. Examples of these problems are wave propagation, turbulent fluid flow, as well as problems involving nonlinear interactions and multiple scales. This has resulted in a significant interest in so-called high-order accurate methods, whic...

متن کامل

developing a pattern based on speech acts and language functions for developing materials for the course “ the study of islamic texts translation”

هدف پژوهش حاضر ارائه ی الگویی بر اساس کنش گفتار و کارکرد زبان برای تدوین مطالب درس "بررسی آثار ترجمه شده ی اسلامی" می باشد. در الگوی جدید، جهت تدوین مطالب بهتر و جذاب تر، بر خلاف کتاب-های موجود، از مدل های سطوح گفتارِ آستین (1962)، گروه بندی عملکردهای گفتارِ سرل (1976) و کارکرد زبانیِ هالیدی (1978) بهره جسته شده است. برای این منظور، 57 آیه ی شریفه، به صورت تصادفی از بخش-های مختلف قرآن انتخاب گردید...

15 صفحه اول

High Order Local Discontinuous Galerkin Methods for the Allen-cahn Equation: Analysis and Simulation

In this paper, we present a local discontinuous Galerkin (LDG) method for the AllenCahn equation. We prove the energy stability, analyze the optimal convergence rate of k + 1 in L norm and present the (2k + 1)-th order negative-norm estimate of the semidiscrete LDG method for the Allen-Cahn equation with smooth solution. To relax the severe time step restriction of explicit time marching method...

متن کامل

Bridging the Hybrid High-Order and Hybridizable Discontinuous Galerkin Methods

We build a bridge between the hybrid high-order (HHO) and the hybridizable discontinuous Galerkin (HDG) methods in the setting of a model diffusion problem. First, we briefly recall the construction of HHO methods and derive some new variants. Then, by casting the HHO method in mixed form, we identify the numerical flux so that the HHO method can be compared to HDG methods. In turn, the incorpo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Epj Web of Conferences

سال: 2021

ISSN: ['2101-6275', '2100-014X']

DOI: https://doi.org/10.1051/epjconf/202124703009